University of

Lethbridge Borries Demeler, Ph.D.
@ Dept. of Chemistry and Biochemistry
o g

CHes |

Canadian Center for Hydrodynamiqs

Canada 150 Research Chair
in Biophysics

NORTHWEST Custom Grid, Density and
BIoPHYSICS Partial Specific Volume
CONSORTIUM P

x. ) L
= e - i |
% e 1 Lﬂ_ﬁi_____ T el
S gy 131 L. - -t 4T -
b - = r—— 1




v Determination

Standard velocity analysis provides s and D, but not the partial specific
volume, V. This parameter is needed to obtain an accurate absolute molecular

weight.
V is highly solvent dependent. There are multiple ways to get V':
 Densitometer (sample must be homogeneous!)
« Density matching with H,0,, or D,O
* Custom Grid methods
* Re-parameterize the sedimentation/diffusion space
* Introduce prior knowledge to extend the solution to other parameters
* Analytical buoyant density centrifugation

« The FDS is ideally suited for analytical buoyant density
centrifugation:

* High radial resolution

* No refractive artifacts from gradient forming materials
* High sensitivity — only very small amounts needed
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

Analytical Buoyant Density Gradient Centrifugation can providey by
measuring the isopycnic position of a macromolecule in the density gradient.

This requires two components:

a) The gradient forming material
* Non-ionic: Nycodenz, lodixanol, Metrizamide
« lonic: CsCl, CsSO,

b) The macromolecule to be measured

The sedimentation velocity experiment will then sediment the macromolecule
in the co-sedimenting solute, subject to an ever changing density
environment. The experiment is run until equilibrium is reached. The
equilibrium radial position is observed, and the density is calculated from the
known sedimentation properties of the gradient forming material. The
calculation requires knowledge of:

c) The meniscus position

d) The bottom of the cell

e) The vbar and molecular weight of the gradient forming material
f) The exact loading concentration of the gradient forming material
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

The equation of the concentration curve at equilibrium:
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

The equation of the macromolecule’s transport inside the gradient:
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S-value is negative here

Molecule will sediment (float) to the left

S-value is positive here

Molecule will sediment to the right
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

The equation of the macromolecule’s transport inside the gradient:
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

The equation of the concentration curve at equilibrium:
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

Determine the vbar for the gradient Determine the loading concentration for
forming materials with a sedimentation the gradient forming materials with a
equilibrium experiment (MW is known), refractometer or by UV absorbance

fix the MW, float the vbar:
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V Determination by Analytical
Buoyant Density Gradient Centrifugation
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UltraScan Buoyant Density Equilibrium Analysis Report:

Peak 1 (peak 2 from experiment "combined-speeds-buoyant-density-runl"):
Sample location: 1/B1488

Sample description:  7/6/2012 1:49:13 PM: Voltage: 2234 Gain: 8 Range: 4 - 1B-T7
Rotor speed: 50000 rpm, (Rotor stretch: 0.0203315 cm)

Peak position: 6.76494 cm

Peak density: 1.14172 g/ml

Peak vhar: 0.87587 mlig

Buffer density: 0.998234 g/ml

Meniscus position: 6.52915 cm

Bottom of cell: 7.17033 cm (Centerpiece bottom at rest: 7.15 cm)
Temperature: 20.5°C

Gradient-forming
material details:
Molecular weight:
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V Determination by Analytical
Buoyant Density Gradient Centrifugation

Characterization of phage DNA packaging intermediates by analytical Nycodenz buoyant
density centrifugation.

@\

Increasing Density

Nycodenz will separate based on hydration, which is very different for DNA and protein.
In fact, DNA has a much lower density when suspended in Nycodenz due to hydration
than protein.
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Differential Density Contrast Sedimentation
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Solution-state conformation and stoichiometry
of yeast Sir3 heterochromatin fibres

Sarah G. Swygert!, Benjamin J. Manning', Subhadip Senapati?, Parminder Kaur?,
Stuart Lindsay?, Borries Demeler® & Craig L. Peterson'

This manuscript describes a how differential density contrast
sedimentation is used to derive partial specific volumes of DNA-protein
complexes by varying the density of the buffer and then derive accurate
molecular weights and anisotropies. Using this approach, the
stoichiometry of Sir3 binding to heterochromatin can be derived. Critical
differences between histone H4 wildtype and mutant effects on binding

Sir3, and on the conformational properties of heterochromatin fibers can
be deduced.
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Differential Density Contrast Sedimentation

Principle:
Measure the apparent sedimentation coefficient in 3 buffers with different
densities. Use H2180 instead of D,O to avoid deuterium exchange since

that would affect the V. Use 0, 30% and 60% H,"0O and extrapolate the

density to the point where sedimentation would cease — that's the
isopycnic point where the density matches that of the analyte.

M [1-vp

S = Nf

When the ratio of v/p equals 1.0, the buoyancy term equals zero and
sedimentation ceases.

Once the v has been determined, it can be used to fit the data to a
size/anisotropy grid with 2DSA or genetic algorithms to calculate
accurate molecular weights and to determine conformational properties.
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Differential Density Contrast Sedimentation
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Custom Grid Method

analygi-na!istry

pubs.acs.org/ac

Characterization of Size, Anisotropy, and Density Heterogeneity of
Nanoparticles by Sedimentation Velocity

Borries Demeler,™’ Tich-Lam I\Iguye_nft Gary E. Gorbet," Virgil Schirf," Emre H. Brookes,
Paul Mul‘a.faney,]r Ala’a O. El-Ballouli,® Jun Pan,® Osman M. Bakr,’ Aysha K. Demeler,'

Blanca I. Hernandez Uribe,’ Nabraj Bhattarai, " and Robert L. Whetten™

The sedimentation and diffusion coefficients can be re-parameterized
when certain properties are known a priori. The Custom Grid approach
allows the investigator to introduce prior knowledge, providing constant
parameters known from external experiments to constrain the
experiment's range and obtain the missing parameters.

Analysis is performed analogous to the two-dimensional spectrum
analysis.
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Custom Grid Method

The sedimentation and diffusion coefficients can be re-parameterized
when certain properties are known a priori. The Lamm equation requires
the sedimentation and diffusion coefficients for simulating transport.

p ==L = v = 7%
Nf

From densitometry, sequence, or density maching — fixv

* Molecular weight and anisotropy can be obtained

From electron microscopy or SAXS or X-ray/NMR - fix anisotropy:

* v and molecular weight can be obtained
From mass spectrometry or polymer sequence — fix molecular weight:

v and anisotropy can be obtained
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Custom Grid Method

From densitometry of polymer sequence — fix partial specific volume:
* Molecular weight and anisotropy can be obtained
* Create a grid over anisotropy (¢) and molecular weight (M)
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Custom Grid Method

Partial Specific Volume (ml/g)
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Ultrastable silver nanoparticles

Anil Desireddy’, Brian E. Conn', Jingshu Guo', Bokwon Yoon?, Robert N. Barnett?, Bradley M. Monahan', Kristin Kirschbaum’,
Wendell P. Griffith!, Robert L. Whetten®*, Uzi Landman® & Terry P. Bigioni®
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Density and Anisotropy — Molecular Weight fixed:

Re-parameterization of the From Structure:
sedimentation-diffusion space allows Molecular weight:

us to measure anisotropy and particle

density: Py P From AUC:

Sedimentation coefficient:
Diffusion coefficient:
0.8- Frictional ratio:

9,621.8

4.19 (3.89, 4.49)
14.5 (12.8, 16.2)
1.47 (1.13, 1.80)

I's Partial specific volume: 0.27 (0.20, 0.34)
0.6
| E From Zeno Bead Modeling:
0.4 2 Sedimentation coefficient: 5.33
13 Diffusion coefficient: 18.5
Frictional ratio: 1.25

Partial specific volume:

0.24 (no H,0)
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Density and Molecular Weight — Anisotropy fixed:

Ligand-stabilized nano-particles and quantum dots:

CdSe 10.61 A, CdSe 17.05 A, CdSe 20.15 A

PbS, 12.6 A, PbS, 15.0 A Ligand shell

Question:
How much ligand is bound?

If we know the density of the
ligand and the density of the
core, and the core radius, we
can measure the density of the
entire particle and obtain the
approximate amount of ligand
Bound to the core.

Obtain: The level of functionalization Metal Core
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Density and Molecular Weight — Anisotropy fixed:

1. Verify anisotropy by TEM
2. obtain core radius from
* TEM (shell radius is invisible)

PbS, 12.6 A
PbS, 15.0 A
CdSe 10.61 A
CdSe 17.05 A

CclSe 20.715 A

CdSe
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Density and Molecular Weight — Anisotropy fixed:

PbS, 12.6 A o | o
PbS. 15.0 A Re-parameterization of the sedimentation/diffusion space
CdS,e 10.61 A when the frictional ratio (anisotropy) is fixed provides

CdSe 17'05 A density and molecular weight of the particle distributions

Cdse 20715 A
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Concentration

PbS, 12.6 £

PbS, 15.0 A o
CdSe 10.61 A %
CdSe 17.05 A

CclSe 20715 A

Sedimentation Coefficient

Sample R (4 M, . (Da) Sw(s) D @cm?’s) V (mL/g) Density (g/mL) R, ., (A)
CdSe 10.61 10.61 3.77E+04 1.09E-12 1.18E-06 0.4017 2.5131 18.20
PbS12.60  12.60 5.68E+04 1.66E-12 1.08E-06 0.3433 2.9129 19.78
PbS 15.00 15.00 7.10E+04 217E-12 1.06E-06 0.2959 3.3795 20.27
CdSe 17.05  17.05 1.71E+05 3.07E-12 7.20E-07 0.3906 2.5605 29.80
CdSe 20.15 2015  2.21E+05 4.15E-12 6.92E-07 0.3395 2.9459 31.00

Table 1: Results obtained from the custom grid analysis using sedimentation velocity data for CdSe
and PbS ODs of radii between 10.61 A and 20.15 A, where R.... is the particle core radius obtained
from TEM / absorption spectroscopy, Mwiis the total molecular weight of ligand stabilized QDs; Sw is
the standardized sedimentation coefficient, D is the diffusion coefficient, vV is the partial specific
volume and Raiis the total particle radius including the organic ligand shell.
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