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What is UltraScan and what does it offer?

● Complete Optima Integration/Data Acqu.

● Adheres to the OpenAUC data standard

● Provides highest resolution analysis

● Provides best fit/lowest RMSD solutions

● 2DSA, PCSA, GA, MC, DMGA, CG, vHW ...

● Advanced simulation support

● Integrated LIMS system, SSL encryption

● Relational database support

● Highest accuracy ASTFEM solutions

● Hydrodynamic bead modeling (US-SOMO)

● Distribution analysis and statistics

● Multi-wavelength/Multi-Speed Analysis

● Global fitting support for unlimited data

● Multi-platform and UltraScan-in-a-Box

● SAXS/SANS analysis

● Supports high-performance computing
UltraScan is a 

Comprehensive 
Hydrodynamic Analysis 

Platform

● Provides best fit/lowest RMSD solutions

● And now GMP...

Some Statistics:
● Approximately 6.5 M lines of code
● $3.5 M NIH/NSF/HHMI funding
● 30 years of development
● Model-E, XLA, XLI, XLF, Optima support
● Well over 500 publications supported by 

UltraScan analysis



  

Worldwide UltraScan LIMS and HPC Server Installations

The UltraScan Science Gateway is a worldwide initiative facilitating AUC analysis on 
various high performance computing installations (Development funded by NSF/XSEDE)

Red: LIMS servers in Canada, USA, Germany, Finland, India and Australia
Green: HPC installations at SDSC (1), TACC (2), FZ-Jülich SCC (3), and U Helsinki (4)



  



  

Application of MWL-AUC  to complex systems

UltraScan AUC Analysis Workflow



  

UltraScan Layout (multi-platform, open source)



  

UltraScan-in-a-Box

Future UltraScan Data Flow

Optima AUC
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Acquisition 

and
Monitoring UltraScan
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Experimental
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More Information: http://www.aucsolutions.com  

http://www.aucsolutions.com/


  

UltraScan HPC Submission Flowchart



Analytical Ultracentrifugation
Background

What can be learned from AUC?

Excellent method for characterizing any molecule or molecular interaction in the 
solution environment – small sample requirement, up to 14 samples can be 
analyzed. Analysis is based on first principles - No standards are required

Molecules can be studied in a physiological environment – solution conditions can 
be adjusted (concentration dependency, effect of pH, ionic strength, buffer type, 
ligands, oxidation state, temperature, etc.)

Very large size range (102 – 108 Dalton)

Dynamics - measure oligomerization states of reversible self- or hetero-associations, 
ligand binding, slow kinetics and Kd

Composition analysis – number of components, their partial concentration, 
molecular weight, and anisotropy

Conformational analysis - folding/melting studies of biopolymers, conformational 
changes based on changes in solution properties
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Analytical Ultracentrifugation
Background

Available Optical Systems:

Multiple detectors extend the range of AUC applications:

UV/vis absorbance (single wavelength): all-purpose detector for biopolymers 
and materials absorbing in the visible. Slower detection, good for low protein 
concentration – measure intensity of transmitted light.

Fluorescence: Study molecules with intrinsic fluorophores or eGFP fusions in 
impure cell extracts, exquisite selectivity for binding experiments, add 
fluorescently labeled antibodies to an impure cell extract, study the order of 
assembly in a multi-domain protein complex – measure intensity of 
fluorescence emission with a confocal microscope setup (488 nm excitation)

Interference: fast data acquisition and measurement of non-absorbing 
molecules, carbohydrates, high-concentration studies – measure refractive 
index differences at 675 nm

Multi-wavelength UV/vis: obtain additional spectral dimension in addition to 
hydrodynamic separation for independent characterization of molecular 
properties – measures intensity of transmission of multiple wavelengths



  

AUC Instrumentation

UV/vis absorbance, Rayleigh interference, fluorescence

Multiple recordings over time...



  

Sedimentation Review

Sedimentation:

Forces at Equilibrium:

Fc - Fb - Fd = 0

Fb (buoyancy) =  ω2 r m
s

Fd (viscous drag) =   fv
Fc (centrifugal force) =  ω2 r m

Explanation:

Fb is the buoyancy force - the force 
required to displace the buffer surrounding 
the solute, and m

s 
is the mass of the 

displaced solvent.



  

Fb (buoyancy) =  ω2 r m
s

Fd (viscous drag) =   f v
Fc (centrifugal force) =  ω2 r m

Substitute the mass of the solvent, m
s
, 

with the mass of the solute, m
ms = mv  , Fb = 2 r m v 

Rearrange the force equation: 
Fc - Fb - Fd = 0   and substitute

2 r m − 2 r mv = fv

Place molecular parameter on one side
and experimental parameters on the other

m 1− v  
f

= v

2r

Put into molar units by multiplying with 
Avogadro's number, N

M 1 − v  
Nf

= v

2 r
= s



  

Partial Specific Volume and Buoyancy

M (1 − v̄ρ )
N f

= v
ω2 r

= s

Sedimentation Forces: Fc - Fb - Fd = 0

Fb (buoyancy)                 =    2 r m
0

Fd (viscous drag)            =    fv
Fc (centrifugal force)      =    2 r m

We need:

Partial specific volume (   ) of solute (we can estimate this from the protein sequence or 
measure     in a densitometer – UltraScan will estimate from protein sequence 
automatically)

Viscosity of solvent (we can obtain this measure from the known composition of the buffer 
or measure in a viscometer – UltraScan will estimate this quantity from buffer composition 
automatically)

Density of solvent (we can obtain this measure from the known composition of the buffer or 
measure it in a densitometer – UltraScan will estimate this quantity from buffer 
composition automatically)

Temperature of experiment (recorded by instrument)

Rotor speed (recorded by instrument)







  

The sedimentation velocity, v, divided by the centrifugal 
field strength, ω2r, is equal to the sedimentation 

coefficient, s

The sedimentation coefficient is proportional to M and 
inversely proportional to f

M 1 − v 
N f

= v

2 r
= s

Definition:

Take-home message:



  

The density and also the viscosity of the solvent affect the 
sedimentation and diffusion of the particle in solution, so the 
measured values need to be corrected to standard conditions. 
Moreover, temperature and buffer composition affect the solvent
density and viscosity, so they need to be considered. To correct
for density and viscosity, use these formulas:

Viscosity and Density Corrections

s20,W = sT , B

1−  20,W T , B

1−  T , B  20,W

D20,W = DT , B

293.15 T , B

T  20,W

UltraScan will automatically apply these corrections 
for aqueous buffers!



  

Radial Dilution

Radial Dilution occurs because of the 
cell's sector shape. Molecules 
sedimenting towards the outside of the 
cell will dilute as they sediment.

All molecules - no matter at what position 
they are - will dilute the same amount over 
a given distance, the speed of dilution is 
proportional to their sedimentation speed. 
This causes a reduction in the observed 
optical density.

Radial Dilution can be observed through a 
reduction in the plateau absorbance in 
successive scans



  

Effect of Diffusion on the Sedimentation Boundary



  

Calculation of the Sedimentation Coefficient:

M 1 − v 
N f

= v

2 r
= s

s b = ln  rb t 
rm t 0  2 t −t0 

−1dr
r
=ω2 s dtv = dr

dt

∫
r=m

r=b
1
r

dr = ∫
t=0

t=scan

s2 dt



  

At Rest
rotor speed = 0

Transport Processes – Sedimentation and Diffusion
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Sedimentation Velocity
          Duration is hours
            high rotorspeed

At Rest
rotor speed = 0

Transport Processes – Sedimentation and Diffusion
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Sedimentation Velocity
          Duration is hours
            high rotorspeed

At Rest
rotor speed = 0

 ∂C
∂ t  r =

− 1
r
∂
∂ r [ s2 r 2C − D r

∂C
∂ r ] t

Transport Processes – Sedimentation and Diffusion
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Sedimentation Equilibrium
             Duration is > 1 day
                    low rotorspeed

Sedimentation Velocity
          Duration is hours
            high rotorspeed

At Rest
rotor speed = 0

J = s2 r C − D
∂C
∂ r

= 0 ∂C
∂ t  r =

− 1
r
∂
∂ r [ s2 r 2C − D r

∂C
∂ r ] t

Transport Processes – Sedimentation and Diffusion
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Background

J = s2 r C − D
∂C
∂ r

= 0(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

C = C0 e
[σ (r 2−rm

2 ) ]

                                   Borries Demeler – Next Generation Hydrodynamic Analysis p. 24




  

Background

J = s2 r C − D
∂C
∂ r

= 0(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

C = C0 e
[σ (r 2−rm

2 ) ]

Sedimentation
Velocity

or

Sedimentation
Equilibrium?

Demeler B, Brookes E, Wang R, Schirf V, Kim CA. Characterization of Reversible Associations by Sedimentation 
Velocity with UltraScan. Macromol. Biosci. 2010. 10(7):775-82.



  

Relationship between M, f, φ, s, and D

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

f =
RT
N D

M =
s N f
1−ν̄ρ

V = M ν̄
N

r0 = (3V
4π )

1 /3

f 0 = 6πηr0

ϕ = f
f 0
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Relationship between M, f, φ, s, and D

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

f =
RT
N D

M =
s N f
1−ν̄ρ

V = M ν̄
N

r0 = (3V
4π )

1 /3

f 0 = 6πηr0

ϕ = f
f 0
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Shape
Dependence



  

Relationship between M, f, φ, s, and D

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

f =
RT
N D

M =
s N f
1−ν̄ρ

V = M ν̄
N

r0 = (3V
4π )

1 /3

f 0 = 6πηr0

ϕ = f
f 0
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Size



  

Relationship between M, f, φ, s, and D

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

f =
RT
N D

M =
s N f
1−ν̄ρ

V = M ν̄
N

r0 = (3V
4π )

1 /3

f 0 = 6πηr0

ϕ = f
f 0
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Anisotropy



  

Relationship between M, f, φ, s, and D

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

f =
RT
N D

M =
s N f
1−ν̄ρ

V = M ν̄
N

r0 = (3V
4π )

1 /3

f 0 = 6πηr0

ϕ = f
f 0
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  Partial specific
  volume and 
  density



  

Parametrization of Anisotropy (Shape)

1.0 ≤  k ≤ 4.0 for most proteins, higher  for 
rod-shaped, disordered and unfolded 
proteins, DNA, fibrils and aggregates or 
linear molecules

k = 1.0

k = 1.2 - 2.5

 k > 3

The frictional ratio  f/f
0 

= k  is a convenient way to parameterize the 
diffusion coefficient and the shape of a molecule . 

The frictional ratio k is 1.0 for a sphere 
since  f = f

0
 and hence k has a convenient 

lower limit



  

Degeneracy of Shape Determination

 k (        )   = k (       )    

k may be the same for different shapes, we cannot distinguish 
them by AUC, we can only measure the anisotropy!



  

Sedimentation Velocity

Sedimentation velocity profile of a mixture of 

macromolecules over time
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Sedimentation Velocity

How many components?

Composition Analysis 

We can answer these questions:
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Sedimentation Velocity

How many components?

What are their sizes and molecular weights?

Composition Analysis 

We can answer these questions:
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Sedimentation Velocity

How many components?

What are their sizes and molecular weights?

What are their anisotropies?

Composition Analysis 

We can answer these questions:
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Sedimentation Velocity

How many components?

What are their sizes and molecular weights?

What are their anisotropies?

What is the partial concentration of each component?

Composition Analysis 

We can answer these questions:
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Sedimentation Velocity

How many components?

What are their sizes and molecular weights?

What are their anisotropies?

What is the partial concentration of each component?

Do the components interact (how fast, strong)?

Composition Analysis 

We can answer these questions:
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Sedimentation Velocity

How many components?

What are their sizes and molecular weights?

What are their anisotropies?

What is the partial concentration of each component?

Do the components interact (how fast, strong)?

What is the reliability of our measurement?

Composition Analysis 

We can answer these questions:
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A first principles approach allows us to model the experimental 
data by fitting it to a mathematical model. The model represents 
the physics of the experiment, and contains parameters of interest 
to the experimentalist. We need to find the values of these 
parameters by adjusting the model so it matches the data. This is a 
hard problem called an “inverse problem” that requires 
optimization (fitting) algorithms which aid us in adjusting the 
parameters so the model fits the data.

In UltraScan this is accomplished by a least squares fitting 
approach that compares each data point from the model with the 
corresponding point in the experimental data:

Optimally, the difference is zero, but because of experimental 
noise this never happens, since the model is noise free.

Modeling of Data

Minimize∑
i=1

N

(Datai − Modeli )
2 ( i  over radius and time)



  

Fitting of noisy data prevents unique solutions – multiple solutions are possible.

We need to minimize noise when modeling data.

There are three ways to reduce or eliminate noise:

1. fit the noise
2. maintain an exceptionally well tuned instrument
3. design your experiment to optimize the quality of the data 

There are three noise types:

1. Time Invariant noise: Noise is different for each radial position, but the same 
offset for each scan, and hence time independent (finger prints).

2. Radially Invariant noise: Noise is different for each scan, but each radial 
position is offset by the same amount throughout the scan (baseline variation)

3. Stochastic (random noise): Noise is different for each radial and time point and 
it is (hopefully) Gaussian in distribution

(1) and (2) can be fitted by UltraScan and removed from the data
 

Noise & Data Modeling Considerations



  

Time Invariant noise: Noise is different for each radial position, but 
the same offset for each scan, and hence time independent.

 

Different Types of Noise



  

Radially Invariant noise: Noise is different for each scan, but each 
radial position is offset by the same amount throughout the scan

 

Different Types of Noise



  

Stochastic (random noise): Noise is different for each radial and 
time point and it is (hopefully) Gaussian in distribution:

 

Different Types of Noise



  



  

Time invariant noise sources:

Reference Channel:
Lamp window
Monochromator optics
Cell window (reference channel)
Slit assembly
Photomultiplier tube optics

Sample Channel:
Lamp window
Monochromator optics
Cell window (sample channel)
Slit assembly
Photomultiplier tube optics

Radially invariant noise sources:
Optical path length changes
Low frequency intensity changes

Intensity vs. Absorbance

Stochastic noise sources:

Electronics 
Photomultiplier tube
Lamp flashes



  

Tale of 2 noisy vectors

Noise of Scan 1

+

Noise of Scan 2

=

Noise * √ 2



  

  Optical system considerations

Intensity measurements record the intensity of light passing 
through one channel. Absorbance measurements record the 
intensity of light passing through one channel, then record the 
intensity of the light passing through the reference channel, and 
subtract it from the first channel. Each channel recording contains 
the (nearly) same amount of time invariant noise, but different 
amount of stochastic noise. Subtraction of time invariant noise will 
eliminate it:

   

Intensity vs. Absorbance

scan1 = signal1 + N s1 + N ti

scan2 = signal2 + N s 2 + N ti

scan1 – scan2 = signal1 – signal2 + N s 1 + N s 2

N s 1 + N s 2 ≈ N s1 √(2)



  



  

Stochastic noise is reduced by approximately a factor of 1.4, 
providing much better quality data and improving the RMSD of 
finite element solution data fits.

The capacity of the instrument is increased because the reference 
channel can be filled with sample, although the total OD in the 
reference cell should remain below 0.5 (for the reference cell). 
The sample OD can be higher, but just as in absorbance optics, 
it should not exceed the dynamic range of the UV-vis detector.

Due to the lower stochastic noise the sample concentration can be 
reduced while maintaining the same signal-to-noise ratio as 
observed in the absorbance measurement.

Advantages of Intensity Data

Measurement of intensity data when measuring velocity 
experiments has multiple advantages:



  

Intensity data can only be used for velocity experiments, since 
considerable time invariant noise and also increased radially 
invariant noise (from variations in the lamp intensity) is present 
in such data. Equilibrium data by definition are time-invariant 
and hence correlate 100% with the noise removal routine which 
is essential for using time-invariant noise.

A Reference Channel is no longer required, the air-to-air region 
above the meniscus can be used as a reference.

Baseline absorbance must be added to sample absorbance and 
the total must be lower than 0.5 OD to avoid gain setting 
changes of the photomultiplier tube.

Advantages of Intensity Data

Additional considerations when measuring intensity 
data:



  

Time- and radially- invariant noise can be fitted by UltraScan and 
removed from the data to improve the results.

Stochastic noise cannot be removed and should be minimized by 
maintaining a well calibrated instrument and performing a well-
designed experiment!

Data subtraction in absorbance mode convolutes two stochastic 
vectors and leads to an increase in stochastic noise by  ~ 

Remember: 

you cannot get reliable answers if you start 
with low quality input data!

Summary:

 2



  

Factors that affect Accuracy - Meniscus



  

Modeling Flow with the Lamm Equation

 

Cao W., Demeler B. Modeling analytical ultracentrifugation experiments with an adaptive space-
time finite element solution of the Lamm equation. (2005) Biophys J. 89(3):1589-602.

The Lamm Equation describes the flow of a single solute in the sector- shaped 
analytical ultracentrifugation cell over time and radius. This allows us to 
simulate an entire experiment from start to finish.

To solve this equation we use the finite element method. This method 
discretizes the two independent variables, the radius and the time.

This way we can calculate the concentration of the solute during the 
experiment for each radial point at each time point (scan). 

Multiple non-interacting solutes are modeled by summing the results from two 
independent simulations.

 ∂C
∂ t  r =

− 1
r
∂
∂ r [ s2 r 2C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion



  

Lamm Equation for Non-interacting Systems:

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2 C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

Lamm equation 
L(s, D, C) for a single 
ideal solute:
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Lamm equation for a 
mixture of non-

interacting solutes:
C = ∑

i=1

n

ci L(si , D i)



  

Lamm Equation for Interacting Systems

(∂C
∂ t ) r =

− 1
r
∂
∂ r [ sω2 r 2 C − D r

∂C
∂ r ] t

Concentration             Sedimentation   Diffusion

Lamm equation 
L(s, D, C) for a single 
ideal solute:
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Lamm equation for an 
interacting system

(e.g., monomer-dimer,
mass action applies):

C = [L( s̄ , D̄) ]r , t s̄ =
∑
j=1

m

s j C j

CT

D̄ =
∑
j=1

m

D j(∂C j /∂ r )

∑
j=1

m

(∂C j /∂ r )

M + M = D K a =
[D ]
[M ]2



  

Optimization and Analysis Methods 
for Sedimentation Velocity

2-dimensional Spectrum Analysis (2DSA): High-resolution, general and model-
independent solution for size and anisotropy distributions of non-interacting systems

Parametrically Constrained Spectrum Analysis (PCSA): Identifies size/anisotropy 
relationships for polymerizing systems and provides a constrained fit over the 2-
dimensional sedimentation/diffusion space.

Custom Grid Analysis (CG): Takes advantage of prior knowledge to parameterize the 
2DSA grid in terms of alternate hydrodynamic variables.

Genetic Algorithms (GA): Robust non-linear least squares optimization method that 
provides parsimonious regularization of 2DSA spectra. Also used for fitting of discrete, 
non-linear models (reversible association, non-ideality, co-sedimenting solvents).

Monte Carlo Analysis (MC): Used to measure the effect of noise on the fitted parameters, 
yields parameter distribution statistics

van Holde – Weischet Method (vHW): Used to generate diffusion-corrected sedimentation 
profiles which provide finely detailed comparisons between multiple samples.

C(s), C(s, f/f0), C(s, M): Low resolution methods - not used in UltraScan.
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Optimization and Analysis Methods 
for Sedimentation Velocity

C(s), C(s, f/f0), C(s, M): Low resolution methods - not used in UltraScan.
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Nonlinear Least Squares Finite Element Fitting

Direct Boundary fitting uses a nonlinear least squares minimization 
approach to fit a model function (a sum of Lamm equations) Y* to an 
experimental dataset Y:

Our Model:

The model is compared to the experimental data in the least squares 
sense for each data point in the experiment (over time and radius)

here, c, b, s and D are nonlinear parameters, and are adjusted 
independently in an iterative fit (Svedberg, SedAnal, Lamm) . 

Min∑
i=1

r

∑
j=1

t

[Y ij
*− Y ij ] 2

Y * =∑
k=1

n

ck L  sk , Dk  b



Nonlinear Least Squares Finite Element Fitting

Finite Element - Nonlinear Least Squares (RMSD: 4.61 x 10-3)
Monte Carlo is needed to define statistical confidence of 
fitted parameters.

M1: 128.8 kD (135.7 kD) 
f/f0: 3.10
s1: 5.43 x 10-13

D1: 2.28 x 10-7

M2: 14.6 kD (14.3 kD)
f/f0: 1.29
s2: 1.71 x 10-13

D2: 1.02 x 10-7



The Optimization Challenge:

Problem with nonlinear least squares optimization:

For multi-component systems, the nonlinear least squares fitting 
algorithm gets easily stuck in local minima and the solution depends 
on the starting points. Problem gets worse with more parameters 
(i.e., multiple components).



The Optimization Challenge:

1. For complicated problems, nonlinear optimization will fail and the 
fitting algorithm will not converge to the global optimum.

2. In addition, due to noise the solution will not be unique and there 
will be an infinite number of equally likely solutions with the same χ2 

How do we get around these problems?

Problem 1 can be alleviated by linearizing the problem

Problem 2 is intractable. The best we can do is to perform a statistical 
error analysis and use Monte Carlo methods.



C(s)/C(M) Method (P. Schuck)

Linearization Approach 1 – keeping a constant  f/f
0
 value:

Decomposition of the concentration function into a linear combination of 
orthogonal basis functions (Lamm equations) distributed over a 
partitioned s-value range and a constant frictional ratio Φ = f/f

0
:

Fit only the amplitudes (c
j 
) of those components that make a non-zero 

contribution by doing a non-negatively constrained linear least squares fit 
over all components.

C = c1 L  s1, D s1,    c2 L  s2, D s2,    ...

Component 1 Component 2



C(s)/C(MW) Method (P. Schuck)

Parameterization Approach: 

Instead of using nonlinear fitting parameters s and D (which are required for the 
solution of the Lamm equation), we treat these parameters as constants. The s-value 
is partitioned over a range from s

min
 < s < s

max 
in equi-distant intervals. Using the 

Stokes-Einstein relationship, the diffusion coefficient can be expressed as a function 
of the sedimentation coefficient and a constant frictional ratio Φ = f/f

0

This way, given an s-value and a fixed shape, a corresponding diffusion coefficient 
can be calculated for each s-value and the Lamm equation term for each species can 
be calculated. Then the only question remaining is the amplitude of each term, which 
is a linear fit, and the best match for k. The frictional ratio can be adjusted for a best fit 
average using a line search.

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity 
ultracentrifugation and Lamm equation modeling. Biophys. J. 78(3):1606-19, 2000

D = RT

18 N  2 /3  2 1−  
s



C(s)/C(MW) Method (P. Schuck)

Min∑
i=1

m

∑
j=1

n

[ c j L  s j , D s j  − Y i ] 2

Note: This will generate Lamm equations that have a fixed frictional ratio and
a diffusion coefficient that is linked to the sedimentation coefficient. 

ALL PARAMETERS EXCEPT THE AMPLITUDES ARE CONSTANT!

  Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey

Perform a linear fit using the NNLS method* and only fit the 
amplitudes c

j 
subject to the constraint c j≥0



C(s)/C(MW) Method (P. Schuck)



C(s)/C(MW) Method (P. Schuck)

f/f0 = 2.297 (fitted)f/f0 = 1.29 (Lysozyme) f/f0 = 3.10 (DNA)

C(s) method (lowest f/f0): s1: 5.43 x 10-13 (61 %), s2: 1.56 x 10-13 (39 %)

RMSD for C(s) fit: 6.0e-3, RMSD for FE fit: 4.61e-3

With increasing f/f0, the number of artifactual peaks increases 
(regularization hides this problem)

Fitted f/f0 values provide an average of all components



C(s)/C(MW) Method (P. Schuck)

f/f0 = 2.297 (fitted)

C(s) method (lowest f/f0): s1: 5.43 x 10-13 (61 %), s2: 1.56 x 10-13 (39 %)

DNA:

Molecular Weight = 120.6 kD
too low

Lysozyme:

Molecular Weight = 30.1 kD
too high



Motivation: Wish List for an Optimal Method: 

We need a method that satisfies the following criteria:

Generality – works accurately and reliably for any system

High resolution/high information content (s, D, partial conc., Kds)

Model independent – it needs to be able to find it's own model

Suitable for global fitting – can integrate other experiments

Always converges to the global minimum (overcomes the egg 
carton problem!)

Computationally efficient



2-Dimensional Spectrum Analysis

Solution: Allow for variation in f/f
0
 as well.

This is now a very large problem, but one that can fortunately be calculated in a 
single iteration, with one Lamm equation for each coordinate point in the grid:

Using NNLS for this problem guarantees c
s, k

 > 0

    m = # of radial points * # of time points = 1000 * 100 = 100,000

     n = # of sedimentation value grid points (~30 - 50)

     f = # of f/f0 value grid points (~30-50)

Total size: 250 million * 4 bytes/value + workspace, altogether > 1 GB

Y * = ∑
s=smin

smax

∑
k=1

k max

c s , k L [ s , D  s , k  ]  b Min∑
i=1

r

∑
j=1

t

[Y ij
*− Y ij ] 2

A x = b Lc = Y

Brookes, E, Cao, W, Demeler, B. A two-dimensional spectrum analysis for sedimentation velocity 
experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J. 2010 
39(3):405-14.



2-D Spectrum Analysis - Refinement:

Step 1: Start with original grid definition:



2-D Spectrum Analysis - Refinement:

Step 2: Perform NNLS



2-D Spectrum Analysis - Refinement:

Step 3: Save non-zero elements into a separate array



2-D Spectrum Analysis - Refinement:

Step 4: Shift grid into Y-direction



2-D Spectrum Analysis - Refinement:

Step 5: Perform NNLS again, but only on the shifted grid (blue)



2-D Spectrum Analysis - Refinement:

Step 6: Add the newly found non-zero elements to the stored 
array



2-D Spectrum Analysis - Refinement:

Step 7: Now shift the grid into the X-direction



2-D Spectrum Analysis - Refinement:

Step 8: Perform NNLS on the shifted grid again



2-D Spectrum Analysis - Refinement:

Step 9: Add the new non-zero elements to the stored array



2-D Spectrum Analysis - Refinement:

Step 10: Complete the square and shift the grid once more in the
               Y-direction



2-D Spectrum Analysis - Refinement:

Step 11: Perform NNLS on the new grid



2-D Spectrum Analysis - Refinement:

Step 12: ... and add the non-zero points to the storage array



2-D Spectrum Analysis - Refinement:

Repeat this process 
until the desired grid 
size has been reached



2-D Spectrum Analysis - Refinement:

Divide and Conquer approach – evaluate multiple grids slightly off-set against 
each other, and accumulate results:

Final result is fairly sparse, but it is also degenerate, includes false positives and 
needs further refinement. It can be used to identify regions that contain signal.



Moving Grid Approach – parallel HPC implementation

Calculate each individual grid in parallel .... 

Grid
1

Grid
1

Grid
2

Grid
3

Grid
4

Grid
1

Grid
5

Grid
6

Grid
7

Sub
Grid 1

Sub
Grid 2

Combine .... 

Merge .... 

Final
Grid

Evaluate each grid on a different processor, and communicate by MPI
Iterate until there is no more change .... 



  

2DSA Result is used to initialize
Genetic Algorithms

The 2DSA finds regions 
with signal in the 
parameter space.

Genetic Algorithms are 
used to refine 2DSA 
solutions and to remove 
false positives through

“Parsimonious 
Regularization”

Initialize GA with 2DSA 
results

Perform calculations on 
a supercomputer

                                   Borries Demeler – Advances in Sedimentation Analysis p. 87



  

2DSA Result is used to initialize
Genetic Algorithms

Genetic algorithms find 
the parsimonious 
solution that satisfies 
Occam's Razor

Genetic Algorithms can 
be combined with Monte 
Carlo analysis to explore 
effect of noise on 
parameter distributions.

Perform calculations on 
a supercomputer

                                   Borries Demeler – Advances in Sedimentation Analysis p. 88



Genetic Algorithms (GA) 

Genetic Algorithms (also called evolutionary programming)
provide a stochastic optimization method

John H Holland, Adaption in Natural and Artificial Systems, 1975, U. of 
Michigan Press

John R Koza, Genetic Programming: On the Programming of Computers by 
Means of Natural Selection, 1992, MIT Press

Based on nature – evolutionary paradigm

Mutation, recombination, deletion, insertion, crossover operators

Multiple populations (“demes”) are allowed to compete, limited migration 
rates between demes are allowed.

Random number generators are used to manipulate operators

Generational Model – survival of the fittest (...fitting function)

Generation → iterations, genes → parameter strings, bases → s, D

Each solute is simulated with the Lamm equation, solutes are summed



GA genes:

S1 S2 S3 ... Sn
D1 D2 D3 ... Dn

Gene:

Component 1

Component 2

Component 3

Component n

Genes are strings of parameters, each gene consists of a pair of 
corresponding sedimentation and diffusion coefficients.



Crossover/Recombination 

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Recombination

Generation 2

Gene B

S1b S2b S3a ... Sna
D1b D2b D3a ... Dna

S1a S2a S3b ... Snb
D1a D2a D3b ... Dnb



Mutation 

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Mutation

Generation 2

Gene B

S1a S2a S3a ... Snc
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2c D3b ... Dnb



Deletion

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Deletion

Generation 2

Gene B

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S3b ... Snb
D1b D3b ... Dnb



Insertion

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b ... Snb
D1b D2b D3b ... Dnb

Gene A

Generation 1

Insertion

Generation 2

Gene B

S1a S2a S3a ... Sna
D1a D2a D3a ... Dna

S1b S2b S3b S4b ... Snb
D1b D2b D3b D4b ... Dnb



Deme Topology

G12

G11
G13

G1n

G42

G41
G43

G4n

G22

G21
G23

G2n

G32

G31 G33

G3n

Deme 1

Deme 2

Deme 4

Deme 3



Initialization of Genetic Algorithms

Parameters from all populations are initialized with reasonable 
starting guesses to create “genes”. 

s-values are initialized using the model independent van Holde – 
Weischet analysis*. It provides a good way to assess the limits and 
possible number of components. 

Corresponding diffusion coefficients are randomly assigned based on 
a reasonable range for k=f/f0 values between given limits (i.e. 1-4):

*Demeler, B. and K. E. van Holde. Sedimentation velocity analysis of highly 
heterogeneous systems. (2004). Anal. Biochem. Vol 335(2):279-288

D = RT

18 N  k  2/3  2 1−  
s 



Approach and Implementation - Initialization

Concentration values are determined with NNLS*, components with 
values below a threshold are eliminated.

Demes are initially kept isolated

Mutation/Crossover/Recombination operators are applied

Progeny is calculated and this process is iterated

After some iterations, migration rates are applied and nonlinear 
optimization (Quasi-Newton/Inverse Hessian) is applied for a few 
iterations.

* Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey



  

Parametrically Constrained Spectrum Analysis

 

Motivation:

We want a method that can model polymerizing systems 
that follow a systematic size/shape growth function (for 
example, end-to-end polymerization) where the anisotropy 
for each size changes in a predictable fashion

                                   Borries Demeler – Next Generation Hydrodynamic Analysis p. 98



Parametrically Constrained Spectrum Analysis

 

Lysozyme: 14.3 kDa
(globular protein)

208 bp DNA: 131.0 kDa
(extended linear dsDNA)

Simple two component system where both components have 
different anisotropy, fitted with a nonlinear method:

                                   Borries Demeler – Advances in Sedimentation Analysis p. 99



Parametrically Constrained Spectrum Analysis

 

C(s) is a uni-valued parameterization of the 
search space uses a uni-dimensional grid with 
a single fitted, weight-averaged frictional ratio:

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
100



  

 
Goal:

Identify a uni-valued parameterization for the 2-dimensional size and 
shape domain that models polymer growth as function of its intrinsic 
shape changes. Constrain molecular weight to a single anisotropy.

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
101

Lysozyme:
s = 1.63
D = 9.94 
 f/f

0 
= 1.35

vbar = 0.723

DNA:
s = 5.37
D = 2.29
f/f

0 
= 3.04

vbar = 0.565



 

Genetic algorithms give the right answer, 
but computationally expensive

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
102



Parametrically Constrained Spectrum Analysis

 

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
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Motivation:

We want a general method that 
can model polymerizing systems 
that follow a systematic size-
anisotropy growth function (e.g., 
end-to-end polymerization) where 
the anisotropy for each size 
changes in a predictable fashion, 
using a uni-valued relationship 
that maps one size to one 
anisotropy value.



Parametrically Constrained Spectrum Analysis

 

PCSA Approach:

● Select any single-valued function (straight line, 
hyperbolic functions, increasing/decreasing sigmoid, 
exponential growth/decay, etc.)

● Generate a discrete grid of functions by varying the 
function's parameters to achieve a good coverage 
between the user-selected limits for the 2-
dimensional range <f/f0,min, f/f0,max>, <smin, smax>.

● Discretize each function over the 2-dimensional 
parameter space and solve with finite element and 
NNLS.

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
104



 



Select the NNLS fit with the lowest RMSD and perform a Levenberg-
Marquardt fit of the function's parameters to find the best model.

Parametrically Constrained Spectrum Analysis

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
106



Overlay plots for PCSA (red) with Genetic Algorithm - Monte Carlo (blue)

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
107



Parametrically Constrained Spectrum Analysis

 

Increasing sigmoidal parameterization for a DNA 
restriction digest mixture with 6 fragments of different 

concentration (50 iteration Monte Carlo analysis): 

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
108



Parametrically Constrained Spectrum Analysis

 

Straight line PCSA 
Monte Carlo results for 
two DNA fragments in 
150 mM NaCl



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

f/
f 0 =

 7
.2

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
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C(s)/C(MW) Method (P. Schuck)

f / f 0 = 4

f / f 0 = 1.25

f / f 0 = 4

f / f 0 = 4



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

C(s) analysis,
high RMSD

PCSA analysis, 
low RMSD

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
112



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

C(s) is unreliable for fitting any velocity data except when anisotropy is 
constant. The PCSA method produces accurate distributions and mol. weight

                                   Borries Demeler – Advances in Sedimentation Analysis p. 
113

PCSA

C(s)

Target
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